Difference between revisions of "Elong-13-10-01"
Line 28: | Line 28: | ||
[[Image:2013-09-30-cs-fixed-fdil.png|350px]] | [[Image:2013-09-30-cs-fixed-fdil.png|350px]] | ||
− | ==Cross Section Check for b1== | + | ===Cross Section Check for b1=== |
To see if this could cause a problem for the b1 statistics, I did a study of the effects of changing the cross section calculation from the simplified to the full for the b1 kinematics. | To see if this could cause a problem for the b1 statistics, I did a study of the effects of changing the cross section calculation from the simplified to the full for the b1 kinematics. | ||
Line 40: | Line 40: | ||
− | ==Cross Section Check for Azz== | + | ===Cross Section Check for Azz=== |
Same as the section above, looking at the difference between the simplified cross section using only <math>F_1</math> and the full cross section using both <math>F_1</math> and <math>F_2</math>, but for the Azz kinematics. | Same as the section above, looking at the difference between the simplified cross section using only <math>F_1</math> and the full cross section using both <math>F_1</math> and <math>F_2</math>, but for the Azz kinematics. | ||
Line 52: | Line 52: | ||
− | ==Comparison to Data== | + | ===Comparison to Data=== |
In order to see how my calculations line up with actual data, I've taken the deuterium information from [http://faculty.virginia.edu/qes-archive/QES-data.php the quasi-elastic scattering archive data page] to compare our cross section calculations for b1 and Azz. There are two measurements (both Shutz:1976) that are similar to our settings: | In order to see how my calculations line up with actual data, I've taken the deuterium information from [http://faculty.virginia.edu/qes-archive/QES-data.php the quasi-elastic scattering archive data page] to compare our cross section calculations for b1 and Azz. There are two measurements (both Shutz:1976) that are similar to our settings: |
Revision as of 15:52, 2 October 2013
Cross Section Calculation
For previous calculations, I was using a simplified version of the cross-section where it was assumed that <math>F_2=2x\cdot F_1</math>, such that
<math>\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\right]\cdot \left[\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{Q^2 }{2\nu^2} \right] </math>.
Since we're in a region that isn't DIS, I thought that the difference may be important so I incorporated <math>F_2</math> from Bosted and removed the assumption:
<math>\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]</math>.
This increased the statistical uncertainty, particularly in the high-x region. It also lowered the rates dramatically, which gives us some room to play around with a lower <math>Q^2</math>.
Although this changes the cross sections quite a bit,
<math>F_1 \mathrm{~Only}</math> | <math>F_1\mathrm{~and~}F_2</math> |
---|---|
The dilution factor is nearly identical.
Cross Section Check for b1
To see if this could cause a problem for the b1 statistics, I did a study of the effects of changing the cross section calculation from the simplified to the full for the b1 kinematics.
Cross Section Check for Azz
Same as the section above, looking at the difference between the simplified cross section using only <math>F_1</math> and the full cross section using both <math>F_1</math> and <math>F_2</math>, but for the Azz kinematics.
HMS <math>\theta_{e'}=12.45^{\circ}</math> <math>E'=5.80\mathrm{~GeV}</math> |
SHMS <math>\theta_{e'}=9.51^{\circ}</math> <math>E'=6.07\mathrm{~GeV}</math> |
---|---|
Comparison to Data
In order to see how my calculations line up with actual data, I've taken the deuterium information from the quasi-elastic scattering archive data page to compare our cross section calculations for b1 and Azz. There are two measurements (both Shutz:1976) that are similar to our settings:
--E. Long 18:57, 2 October 2013 (UTC)