Elong-13-09-18

From HallCWiki
Jump to navigationJump to search

Optimizing Azz in QE and x>1 Range

Beam Energy = 2.2 GeV



HMS

2013-09-18-e022-hms.gif

SHMS

2013-09-18-e022-shms.gif

Beam Energy = 4.4 GeV


HMS

2013-09-18-e044-hms.gif

SHMS

2013-09-18-e044-shms.gif

Beam Energy = 6.6 GeV


HMS

2013-09-18-e066-hms.gif

SHMS

2013-09-18-e066-shms.gif

Beam Energy = 8.8 GeV


HMS

2013-09-18-e088-hms.gif

SHMS

2013-09-18-e088-shms.gif

Beam Energy = 11.0 GeV


HMS

2013-09-18-e110-hms.gif

SHMS

2013-09-18-e110-shms.gif

Optimization Results

Beam Energy = 2.2 GeV


2013-09-19-e022-opt-hms.png2013-09-19-e022-opt-shms.png

Beam Energy = 4.4 GeV


2013-09-19-e044-opt-hms.png2013-09-19-e044-opt-shms.png

Beam Energy = 6.6 GeV


2013-09-19-e066-opt-hms.png2013-09-19-e066-opt-shms.png

Beam Energy = 8.8 GeV


2013-09-19-e088-opt-hms.png2013-09-19-e088-opt-shms.png

Beam Energy = 11.0 GeV


(None for HMS -- rates drop off dramatically by the time it's in a good kinematics range) 2013-09-19-e110-opt-shms.png

Fixed uncertainty due to large asymmetry

Previously, the code was using a simplified <math>\delta A_{zz} = \frac{4}{f \cdot Pzz \sqrt{N}}</math>. This gave all of the above uncertainties, as well as this one:

2013-09-19-old-error.png

Going back through the uncertainty tech note, the assumption of a small asymmetry isn't made until after Eq. 28. Utilizing the full uncertainty (Eq. 28 and 25), <math>\delta A_{zz} = \frac{2}{f \cdot Pzz}\sqrt{\frac{N_{Pol}}{N_u^2}+\frac{N_{Pol}^2}{N_u^3}}</math>, the uncertainties change (very slightly) to:

2013-09-19-new-error.png

Time Scan

Scanning over time and increasing it from 1 day to 2 weeks in intervals of one day, we get:

2013-09-19-time-scan.gif


--E. Long 21:13, 19 September 2013 (UTC)