Elong-14-04-16

From HallCWiki
Jump to navigationJump to search

Deuteron Shape

From the video make by S.C. Pieper, et al., I extracted the tensor and vector polarization frames and made repeating videos of each. When we vector-polarize or tensor-polarize, the probability densities for the deuteron look like:

Vector Tensor
2014-04-16-vector.gif 2014-04-16-tensor.gif

Tensor Polarization Relation to Vector Polarization

Tensor polarization is related to the vector polarization by <math>P_z=2-\sqrt{4-3P_{zz}^2}</math>

2014-04-16-tensor-vector-plot.png

Deuteron States

From basic quantum mechanics, we know that the possible states for 2 nucleons are

the isospin singlet with S=0:

<math>|\uparrow \downarrow> - |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math>

and the isospin triplet with S=1:

<math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math>
<math>|\uparrow \downarrow> + |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math>
<math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math>

For the deuteron, <math>J=1</math> and <math>P=+1</math>. This kills both of the <math>m_s=0</math> states, since they cannot simultaneously have <math>J=1</math> and <math>P=+1</math> since <math>P=(-1)^L</math>.

This leaves only two possible states:

<math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math>
<math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math>

Angular Momentum Analysis

Now, let's look at each of these a bit more indepth according to their angular momentum components

State <math>J</math> <math>m_j</math> <math>L</math> <math>m_l</math> <math>S</math> <math>m_s</math>
\uparrow \uparrow></math> (S-wave, 96%) 1 +1 0 0 1 +1
\uparrow \uparrow></math> (S-wave, 96%) 1 0 0 0 1 0
\uparrow \uparrow></math> (S-wave, 96%) 1 -1 0 0 1 -1
\downarrow \downarrow></math> (D-wave, 4%) 1 +1 2 +2 1 -1
\downarrow \downarrow></math> (D-wave, 4%) 1 +1 2 +1 1 0
\downarrow \downarrow></math> (D-wave, 4%) 1 0 2 +1 1 -1
\downarrow \downarrow></math> (D-wave, 4%) 1 +1 2 0 1 +1
\downarrow \downarrow></math> (D-wave, 4%) 1 0 2 0 1 0
\downarrow \downarrow></math> (D-wave, 4%) 1 -1 2 0 1 -1
\downarrow \downarrow></math> (D-wave, 4%) 1 -1 2 -1 1 0
\downarrow \downarrow></math> (D-wave, 4%) 1 0 2 -1 1 +1
\downarrow \downarrow></math> (D-wave, 4%) 1 +1 2 -2 1 +1