Difference between revisions of "Elong-15-05-04"

From HallCWiki
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
The deuteron elastic peak was calculated using a [[Elong-15-02-26 | parametrization of the deuteron elastic form factors A and B]] by
 
The deuteron elastic peak was calculated using a [[Elong-15-02-26 | parametrization of the deuteron elastic form factors A and B]] by
  
<math>
+
$
 
\frac{d^2 \sigma}{d\Omega dE'} = \sigma_{\mathrm{Mott}}\left(\frac{E'}{E}\right)\left[ A + B \tan ^2 \left( \frac{\theta}{2} \right) \right] \delta (E'-E'_{el}),
 
\frac{d^2 \sigma}{d\Omega dE'} = \sigma_{\mathrm{Mott}}\left(\frac{E'}{E}\right)\left[ A + B \tan ^2 \left( \frac{\theta}{2} \right) \right] \delta (E'-E'_{el}),
</math>
+
$
  
where <math>\delta(E'-E'_{el})</math> is approximated by a Gaussian distribution with its width determined by the resolution of the spectrometers,  
+
where $\delta(E'-E'_{el})$ is approximated by a Gaussian distribution with its width determined by the resolution of the spectrometers,  
<math>
+
 
 +
$
 
\delta(E'-E'_{el}) = \frac{1}{2\Delta E\cdot E'_{el}\sqrt{\pi}}e^{-\frac{(E'-E'_{el})^2}{2(\Delta E\cdot E'_{el})^2}},  
 
\delta(E'-E'_{el}) = \frac{1}{2\Delta E\cdot E'_{el}\sqrt{\pi}}e^{-\frac{(E'-E'_{el})^2}{2(\Delta E\cdot E'_{el})^2}},  
</math>
+
$
  
where <math>\Delta E=0.1 ~(0.08)\%</math> for the HMS (SHMS) and <math>E'_{el}=\frac{Q^2}{2m_D}.</math>
+
where $\Delta E=0.1 ~(0.08)\%$ for the HMS (SHMS) and $E'_{el}=\frac{Q^2}{2m_D}.$
  
 
Results of the cross section vs. x are shown below for three Q<sup>2</sup>.
 
Results of the cross section vs. x are shown below for three Q<sup>2</sup>.
  
 
{| border="1" style="text-align:center;"
 
{| border="1" style="text-align:center;"
! <math>Q^2 = 0.17</math> (GeV<sup>2</sup>) !! <math>Q^2 = 0.71</math> (GeV<sup>2</sup>) !! <math>Q^2 = 1.50</math> (GeV<sup>2</sup>)
+
! $Q^2 = 0.17$ (GeV<sup>2</sup>) !! $Q^2 = 0.71$ (GeV<sup>2</sup>) !! $Q^2 = 1.50$ (GeV<sup>2</sup>)
 
|-
 
|-
 
| [[Image:2015-05-06-sig-q2-017.png|300px]] || [[Image:2015-05-06-sig-q2-071.png|300px]] || [[Image:2015-05-06-sig-q2-0150.png|300px]]
 
| [[Image:2015-05-06-sig-q2-017.png|300px]] || [[Image:2015-05-06-sig-q2-071.png|300px]] || [[Image:2015-05-06-sig-q2-0150.png|300px]]
 
|-
 
|-
 
|}
 
|}

Latest revision as of 14:31, 18 October 2023

The deuteron elastic peak was calculated using a parametrization of the deuteron elastic form factors A and B by

$ \frac{d^2 \sigma}{d\Omega dE'} = \sigma_{\mathrm{Mott}}\left(\frac{E'}{E}\right)\left[ A + B \tan ^2 \left( \frac{\theta}{2} \right) \right] \delta (E'-E'_{el}), $

where $\delta(E'-E'_{el})$ is approximated by a Gaussian distribution with its width determined by the resolution of the spectrometers,

$ \delta(E'-E'_{el}) = \frac{1}{2\Delta E\cdot E'_{el}\sqrt{\pi}}e^{-\frac{(E'-E'_{el})^2}{2(\Delta E\cdot E'_{el})^2}}, $

where $\Delta E=0.1 ~(0.08)\%$ for the HMS (SHMS) and $E'_{el}=\frac{Q^2}{2m_D}.$

Results of the cross section vs. x are shown below for three Q2.

$Q^2 = 0.17$ (GeV2) $Q^2 = 0.71$ (GeV2) $Q^2 = 1.50$ (GeV2)
2015-05-06-sig-q2-017.png 2015-05-06-sig-q2-071.png 2015-05-06-sig-q2-0150.png